92号汽油价格变动情况_92号汽油价格历次调整时间表
1.2022年邯郸89号汽油的价格是多少邯郸95号汽油油价
2.对化学功能材料的认识
92#汽油的密度为0.725g/ml,即0.725kg/L;
92号汽油
就是辛烷值为92的汽油,适合中档车(压缩比比较低的),2013 年12 月18 日国家质量监督检验检疫总局和国家标准化管理委员会联合发布了第五阶段车用汽油国家标准---《车用汽油》( GB 17930-2013 替代GB 17930-2011)。
《车用汽油》( GB 17930-2013) 由中国石油化工股份有限公司石油化工科学研究院、中国石油天然气股份有限公司石油化工研究院和中国汽车技术研究中心联合起草修订,历次版本发布情况为GB 17930-1999,GB 17930-2006 和GB 17930-2011。本次修订既考虑了国内当前和今后一个时期内对大气污染防治和空气质量改善的迫切要求,也考虑了车用汽油产品生产、储运和使用的现状,以及油品生产企业技术改造和汽车排放控制技术的需求,主要指标与欧洲现行标准水平相当,满足了国内第五阶段汽油车污染物排放标准的要求,有助于减少机动车排放污染物,对于保护环境,改善空气质量具有重要意义。
《车用汽油》( GB 17930-2013) 首次规定了密度指标,其值为20 ℃时720 ~ 775 kg /m3 ,以进一步保证车辆燃油经济性相对稳定。与GB 17930-2011 相比较,最主要变化可以概括为"三减、二调、一增加"。
"三减"是指将硫质量分数指标限值由第四阶段的50μg /g 降为10 μg /g,降低了80%; 将锰质量浓度指标限值由第四阶段的8 mg /L 降低为2 mg /L,禁止人为加入含锰添加剂; 将烯烃含量由第四阶段的28%降低到24%。
"二调"是指调整蒸汽压和牌号。其中,冬季蒸气压下限由第四阶段的42 kPa 提高到45 kPa,夏季蒸气压上限由第四阶段的68 kPa 降低为65 kPa,并规定广东、广西和海南全年执行夏季蒸气压。同时,考虑到第五阶段车用汽油。由于降硫、禁锰引起的辛烷值减少,以及国内高辛烷值资源不足情况,结合炼油工业实际,该标准将车用汽油牌号由90 号、93 号、97 号分别调整为89 号、92 号、95 号。
"一增加"是在标准附录中增加了98 号车用汽油( Ⅴ) 的技术要求和试验方法。据测算,实施《车用汽油》( GB 17930-2013) 后将大幅减少车辆污染物排放量,预计在用车每年可减排氮氧化物约30 万吨,新车5 a 累计可减排氮氧化物约9 万吨。
2022年邯郸89号汽油的价格是多少邯郸95号汽油油价
太平洋汽车网老解放牌汽车。89号汽油是指它含有89%抗爆震能力强的异辛烷,辛烷值的高低成了汽油发动机对抗爆震能力高低的指标。由于降硫、禁锰引起的辛烷值减少,以及本国高辛烷值资源不足,结合炼油工业的实际,将第五阶段车用汽油牌号由90号、93号、97号分别调整为89号、92号、95号。
车用汽油由中国石油化工股份有限公司石油化工科学研究院、中国石油天然气股份有限公司、石油化工研究院和中国汽车技术研究中心联合起草修订,历次版本发布情况为GB17930?1999,GB17930?2006和GB17930?2011。
本次修订既考虑了国内当前和今后一个时期内对大气污染防治和空气质量改善的迫切要求,也考虑了车用汽油产品生产、储运和使用的现状,以及油品生产企业技术改造和汽车排放控制技术的需求,主要指标与欧洲现行标准水平相当,满足了国内第五阶段汽油车污染物排放标准的要求,有助于减少机动车排放污染物,对于保护环境,改善空气质量具有重要意义。(图/文/摄:太平洋汽车网陈杰2)
对化学功能材料的认识
89号汽油的价格:
每升价格:8.35元
每吨价格:11190元
拓展信息:
89号汽油,是指它含有89%抗爆震能力强的“异辛烷”。于是辛烷值的高低就成了汽油发动机对抗爆震能力高低的指标。如果用89号汽油,当然不容易产生爆震。由于降硫、禁锰引起的辛烷值减少,以及我国高辛烷值资源不足,结合我国炼油工业的实际,将第五阶段车用汽油牌号由90号、93号、97号分别调整为89号、92号、95号。
《车用汽油》由中国石油化工股份有限公司石油化工科学研究院、中国石油天然气股份有限公司石油化工研究院和中国汽车技术研究中心联合起草修订,历次版本发布情况为GB17930—1999,GB17930—2006和GB17930—2011。本次修订既考虑了国内当前和今后一个时期内对大气污染防治和空气质量改善的迫切要求,也考虑了车用汽油产品生产、储运和使用的现状,以及油品生产企业技术改造和汽车排放控制技术的需求,主要指标与欧洲现行标准水平相当,满足了国内第五阶段汽油车污染物排放标准的要求,有助于减少机动车排放污染物,对于保护环境,改善空气质量具有重要意义。
功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。
功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。
鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的 比例 。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中, 都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。
新型功能材料国外发展现状
当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。
超导材料 以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。
高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦( 4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的上临界场[H c2 (4K)>50T],能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。正因为这些由本征特性Tc、Hc2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高Tc超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。
生物医用材料 作为高技术重要组成部分的生物医用材料已进入一个快速发展的新阶段,其市场销售额正以每年16%的速度递增,预计20年内,生物医用材料所占的份额将赶上药物市场,成为一个支柱产业。生物活性陶瓷已成为医用生物陶瓷的主要方向;生物降解高分子材料是医用高分子材料的重要方向;医用复合生物材料的研究重点是强韧化生物复合材料和功能性生物复合材料,带有治疗功能的HA生物复合材料的研究也十分活跃。
能源材料 太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能电池,转换率高达40%。美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前研究的热点。
生态环境材料 生态环境材料是20世纪90年代在国际高技术新材料研究中形成的一个新领域,其研究开发在日、美、德等发达国家十分活跃,主要研究方向是:①直接面临的与环境问题相关的材料技术,例如,生物可降解材料技术,CO 2 气体的固化技术,SOx、NOx催化转化技术、废物的再资源化技术,环境污染修复技术,材料制备加工中的洁净技术以及节省资源、节省能源的技术;②开发能使经济可持续发展的环境协调性材料,如仿生材料、环境保护材料、氟里昂、石棉等有害物质的替代材料、绿色新材料等;③材料的环境协调性评价。
智能材料 智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果。
国内功能材料发展的现状和差距
我国非常重视功能材料的发展,在国家攻关、“ 863”、“973”、国家自然科学基金等计划中,功能材料都占有很大比例。在“九五”“十五”国防计划中还将特种功能材料列为“国防尖端”材料。这些科技行动的实施,使我国在功能材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土功能材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等功能材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢电池、锂离子电池的主要性能指标和生产工艺技术均达到了国外的先进水平,推动了镍氢电池的产业化;功能陶瓷材料的研究开发取得了显著进展,以片式电子组件为目标,我国在高性能瓷料的研究上取得了突破,并在低烧瓷料和贱金属电极上形成了自己的特色并实现了产业化,使片式电容材料及其组件进入了世界先进行列; 高档钕铁硼产品的研究开发和产业化取得显著进展,在某些成分配方和相关技术上取得了自主知识产权; 功能材料还在“两弹一星”、“四大装备四颗星”等国防工程中做出了举足轻重的贡献。
目前世界各国功能材料的研究极为活跃,充满了机遇和挑战,新技术、新专利层出不穷。发达国家企图通过知识产权的形式在特种功能材料领域形成技术垄断,并试图占领中国广阔的市场,这种态势已引起我国的高度重视。近年来,我国在新型稀土永磁、生物医用、生态环境材料、催化材料与技术等领域加强了专利保护。但是,我们应该看到,我国目前功能材料的创新性研究不够,申报的专利数,尤其是具有原创性的国际专利数与我国的地位远不相称。我国功能材料在系统集成方面也存在不足,有待改进和发展。
在未来的五到十年,我国经济、社会及国家安全对功能材料有着巨大的需求,功能材料是关系到我国能否顺利实现第三步战略目标的关键新材料。
发展重点
高温超导材料制备与应用技术
稀土功能材料
新型能量转换材料与技术(能源材料)
生物医用材料
绿色奥运工程材料与技术
分辨离膜材料与技术(海水、氯碱膜)
印刷(制版、感光)、显示( OLED)材料
高新技术改造传统产业技术
关键技术选择
能源材料
①固体氧化物燃料电池:
固体氧化物燃料电池是一种新型绿色能源装置,比质子交换膜燃料电池有更高的转换效率和节能效果,可减少二氧化碳排放 50%,不产生NOx,已成为发达国家重点研究开发的新能源技术。但目前研究的固体氧化物燃料电池的工作温度达800~900℃,其关键部件的材料制备总是成为制约固体氧化物燃料电池发展的瓶颈。应突破的关键技术主要有:a)高性能电极材料及其制备技术;b)新型电解质材料及电极支撑电解质隔膜的制备技术;c)电池结构优化设计及其制备技术;d)电池的结构、性能与表征的研究。
②光电转换效率大于 18%的硅基太阳能电池商品化;
研制出光电转换效率大于 18%的低成本、大面积、可商业化的硅基太阳能电池及其组件。
③太阳能的综合利用 (光电、热电、热交换)及其与风力发电的耦合技术;建立总体利用效率达15%的追尾聚集光式太阳能光电、热电、热交换系统并实用化,建立太阳能综合利用与风力发电耦合的实用型分布式地面电站,并可并网供电。
稀土材料
①稀土催化材料
②稀土永磁材料
突破高性能 (N50)、高均匀性、高工作温度、低温度系数的烧结稀土永磁材料和高性能(磁能积20MGOe)粘结稀土永磁材料的产业化关键技术。
③高亮度、长寿命白光 LED节能照明系统
低成本、高亮度、长寿命白光 LED节能照明系统产业化并进入普通百姓家庭。
生物医用材料
①生物芯片;
②生物兼容性好、可降解或可诱导再生的人体软、硬组织替换材料;
③具有分子识别和特异免疫功能的血液净化材料和装置。
生态环境材料
①有机膜分离技术:海水(或盐碱水)淡化效率达 50%的有机膜实用化和产业化。
②固沙植被材料与技术;
③节能、环保的建筑材料及其关键工艺技术:
突破日产 2000吨的流态化水泥烧成技术,其单位能耗与粉尘排放低于目前的新型干法工艺;实现纯氧燃烧生产浮法建筑玻璃的产业化。
特种功能材料
①无机分离催化膜:突破无机分离催化膜(透氧膜、分子筛膜、透氢膜)的关键制备技术,建立无机分离催化膜用于天然气催化转化制备合成气和液体燃料、天然气直接转化制备乙烯、生物质原料制备乙醇、天然气制氢等方面的示范性生产装置。
②大尺寸光学金刚石膜;
③有机磁性材料 :突破本征有机磁性材料的关键技术。
④敏感材料与传感器。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。